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1 Introduction

Can competitive grouping based upon individuals’ group contributions increase coop-
eration and efficiency? Recent behavioral research has answered this question with a
clear “yes”:1 Experimental findings about the effects of endogenous group formation on
provision levels indicate that the degree of excludability of public goods or team goods
(Buchanan, 1965) is not the only factor that matters. The method by which players are
assigned to their cooperative units might be equally important.

Worldwide, trends toward globalization and toward contribution-based rather than
privilege-based grouping appear to go hand in hand, facilitated by equal-rights move-
ments, scholarship programs, and increasingly global -and hence more intense, competition
in business and education. The entry and promotion systems of business and nonprofit or-
ganizations are increasingly based on contribution rather than on superficial criteria such
as race, class or gender.2 With the resulting increase in competitiveness, social units that
still group based on criteria unrelated to output are likely less competitive,3 and might
either change or disappear.4

However, before one can suggest that competitive grouping is indeed an effective tool
to raise social contributions, the important issue of unequal ability to contribute must be
addressed. Unequal abilities are a reality in all communities or societies, be it due to differ-
ences in health, education, cognitive abilities, and so on. In this chapter we theoretically
analyze and experimentally test a formal mechanism of competitive, contribution-based
endogenous grouping, called “Group-based Meritocracy Mechanism” (GBM) (see
Gunnthorsdottir, Vragov, Seifert & McCabe, 2009, henceforth GVSM, for an introduc-
tory analysis) and make the ability to contribute unequal between players, effectively
creating two types of citizens: those who are able to contribute more, and those who can
only contribute less.

Applying the principle of payoff dominance (Harsanyi & Selten, 1988), one can make
a precise prediction about the aggregate behavior of GBM participants even if their abil-
ities to contribute are unequal: Inequality notwithstanding, the mechanism should lead
to high social contributions and efficiency in most instances. GVSM analyzed and exper-

1See, e.g. Ahn, Isaac & Salmon, 2008; Charness & Yang, 2009; Croson, Fatas & Neugebauer 2007;
Güth, Levati, Sutter & van der Heijden, 2007; Cabrera, Fatas, Lacomba & Neugebauer, 2007; Page,
Putterman & Unel, 2006; Gächter & Thöni, 2005; Cinyabuguma, Page & Putterman, 2005; see Maier-
Rigaud, Martinsson & Staffiero, 2005 for an overview of endogenous group formation games where the
rules of the game are common knowledge. Endogenous grouping also has an impact if players do not even
know that they are being grouped (e.g., Ones & Putterman, 2004; Gunnthorsdottir, Houser & McCabe,
2007).

2For example, in order to increase intellectual competitiveness, over the 20th century Ivy League schools
reduced or eliminated non-performance related intake criteria such as legacy preferences, gender, or eth-
nicity (Karabel, 2005).

3For example Singapore, among the most successful Asian countries by most standards, seceded from
Malaysia in 1965 because it rejected ethnic quotas in the assignment of social and professional roles in
favor of contribution-based hiring.

413th century Mongol general Genghis Khan, who successfully conquered large regions of Asia, broke
with tradition by placing warriors in his military hierarchy based on loyalty and ability only, rather than
class or origin.
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imentally tested a basic version of the GBM with equal endowments, and found that the
GBM’s payoff-dominant, asymmetric “near-efficient equilibrium” (henceforth NEE)
was reliably and precisely coordinated in the laboratory, even though it is unlikely that
experimental subjects can consciously understand its structure.

The current study builds upon GVSM’s introductory work; the three main contribu-
tions here are as follows: (1) we show that GVSM’s findings of precise tacit coordination
of the payoff dominant asymmetric equilibrium are robust to an increase in the complexity
of the game, (2) we increase the realism of GVSM’s original model by introducing unequal
abilities to contribute, and (3) we provide a general theoretical analysis which suggests
an array of future experimental tests, as well as extensions of the current model.

(1) GVSM’s subjects all had the same endowment and thus equal ability to make a
contribution. We increase complexity by introducing two different endowment levels while
keeping everything else (including the median/mean endowment) the same as in GVSM’s
experiments. Under two endowment levels, the asymmetric NEE is more elaborate; it
consists of three different strategies while in GVSM’s setup it consisted of only two. We
have discovered only one reliable method of finding the game’s equilibria involving posi-
tive contributions: the gradual elimination of possible strategy combinations by searching
for incentives to deviate, a lengthy and somewhat involved process (see Section 3 and
Appendix A). However, our experimental results show that GVSM’s initial findings about
the “magical” (Kahneman, 1988, p. 12) coordination of the asymmetric payoff-dominant
equilibrium are robust to the change we implemented.

(2) As mentioned above, unequal ability to contribute is a reality in communities and
societies, and should be incorporated in any design intended to increase cooperation. Our
experimental results indicate that even when abilities to contribute are unequal, compet-
itive, contribution-based team formation remains an effective and precise mechanism to
raise social contributions, at least in the controlled environment of the laboratory.

(3) The general theoretical analysis of a GBM mechanism with two endowment levels
(henceforth 2-Type GBM) suggests that under contribution-based grouping, the effect
of unequal abilities to contribute is not straightforward: Group size, the overall propor-
tions of players with high endowments and low endowments, and the degree of inequality
all impact efficiency. Interestingly, we find that efficiency increases when the difference in
abilities to contribute increases. Our analysis suggests an array of further experimental
tests of competitive endogenous grouping when abilities to contribute differ. By chang-
ing the game’s parameters experimenters can create many different cases, which allow
the examination of (a) theories of equilibrium selection, in particular payoff dominance
(Harsanyi & Selten, 1988), (b) tacit coordination of various types of asymmetric equilib-
ria which are non-obvious to subjects and which, depending upon the parameters, have
different properties, and (c) the impact of different degrees of inequality with regard to
players’ ability to contribute on equilibrium structure and subject behavior.

Overview

Section 2 describes the GBM mechanism, and compares it to the Voluntary Contribution
Mechanism (VCM) (Isaac, McCue & Plott, 1985). We suggest that the VCM and the
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GBM can serve as rough models of privilege-based and merit-based social stratification,
respectively. Section 2 also contains a brief overview of the equilibrium structure of the
basic GBM and its extension under study here, the 2-Type GBM. Section 3 formally
analyzes the 2-Type GBM. The examples in Section 3, with parameters commonly used
in experiments, suggest an array of further experimental tests.

Section 4 describes a GBM experiment, where subjects have two different endowment
levels. Section 5 contains the results and shows that the payoff dominant Nash equilib-
rium organizes aggregate behavior very well. In Section 6 we detail possible follow-up
studies based on our theoretical analysis, discuss sociological and policy implications of
our findings, and address shortcomings and potential criticisms.

2 The Group-based Meritocracy mechanism (GBM) with
two different endowment levels

A Group-based Meritocracy (GBM) is a society in which participants are assigned to
groups based on their contributions to a group account. The game shares features with the
Voluntary Contribution Mechanism (VCM), the standard experimental model to examine
free-riding, but with competitive contribution-based grouping added. We first briefly
describe the VCM before addressing how the GBM differs.

The VCM

In a VCM n participants are randomly assigned to G groups of fixed size φ. After group-
ing, players each decide simultaneously and anonymously how much of their individual
endowment wi to keep for themselves, and how much to contribute to a group account.
Contributions to the group account are multiplied by a factor g representing the gains from
cooperation before being equally divided among all φ group members. In the remainder of
this paper, we denote the rate g/φ by m. m is the Marginal Per Capita Return (MPCR)
to each group member from an investment in the group account. As long as 1/φ < m < 1,
this game is a social dilemma: efficiency is maximized if all participants contribute fully
to their group, but each individual’s dominant strategy is to contribute nothing. In ex-
perimental tests of the VCM, mean group contributions start at about half of the total
endowments, and fall toward the dominant-strategy equilibrium of non-contribution by all
within about ten repetitions (for overviews see, e.g., Ledyard, 1995; Davis & Holt, 1993).

The basic GBM mechanism with homogeneous endowments wi

The GBM’s equilibrium structure differs from the VCM’s because in the GBM group
membership is competitively based on individual contributions. As in the VCM, pay-
off functions, group size, and other parameters are fixed. However, a GBM player has
considerable control over her group placement, through her public contribution decisions.

Participants first make their contribution decisions, then get ranked according to their
contributions to the group account. Based on this ranking, participants are partitioned
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into equal-sized groups. Individual earnings are computed taking into account the group
a player has been assigned to. For the game’s equilibrium analysis it is important to
note that any ties for group membership (due to equal group contributions) are broken at
random. All this is common knowledge.5

The GBM also differs from the VCM in how the entire society is modeled. In the VCM
each arbitrarily composed group exists in isolation. Since team assignment is random,
there is no social mobility either. The GBM, in contrast, is not just about a single isolated
group, but about a society consisting of multiple groups, where socially mobile players are
linked via a cooperative-competitive mechanism. Through their contribution decisions
they compete for membership in units with potentially different collective output and
payoffs. The GBM’s equilibrium analysis must therefore extend over the multiple groups
that make up an organizationally stratified society.

The VCM and the GBM as models of social grouping and stratification

In the VCM, the choices a participant makes do not affect her placement in the experimen-
tal mini-society: each VCM player must accept what has been handed to her in the random
grouping process. As Rawls (1971) points out, each individual must accept the “Lottery
of Birth” with regard to factors that are fixed at the beginning of life and over which
the individual has no control, such as race or gender. In privilege-based societies however
the Lottery of Birth remains disproportionally important throughout a person’s life, since
these unalterable characteristics determine her organizational membership and place in
society, and through it, her payoffs. This is why the VCM, where grouping is random, can
be viewed as a model of an ascriptive (Linton, 1936), privilege-based society where the
Lottery of Birth looms large. The GBM in contrast, with its competitive contribution-
based grouping, can serve as a model of meritocratic social organization where people
are grouped and stratified based on their choices; high-contributors join more produc-
tive cooperative units where payoffs are higher. The GBM’s incentive structure generates
competition and increases efficiency. This is reflected in its equilibrium structure.

The equilibria of the GBM with homogeneous endowments

In contrast to the VCM with its dominant strategy equilibrium of non-contribution by all,
GVSM show that in the relatively simple case when endowments, and hence abilities to
contribute, are equal, the GBM has two pure-strategy equilibria6 which differ in efficiency.

5Gunnthorsdottir, Houser & McCabe (see also Gunnthorsdottir, 2001) use a related game where like-
contributors are grouped together. With the goal of identifying player types who vary in reciprocity,
Gunnthorsdottir et al. created a purposefully vague and brief version of a VCM with contribution based
grouping, so that subjects, ignorant about the grouping method, can project their personality (cooperator
or free rider) into this ambiguous situation. Thus, their design and its purpose differ from ours. The current
study tests a specific equilibrium prediction based on a precise game-theoretic model. In established
communities and societies the grouping method is usually known, as is the case in the current study.
Gunnthorsdottir (2009) found that behavior is quite different when subjects know the grouping method
compared to situations where they don’t.

6Additionally and depending on the parameters, there exist mixed-strategy equilibria. Their existence
is briefly discussed by GVSM. Mixed strategies are beyond the scope of the current paper since (1) the
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An equilibrium of non-contribution by all remains omnipresent, reflecting the fact that
the GBM retains some social dilemma properties. However, with competitive grouping
the social dilemma features are much attenuated, and the equilibrium of non-contribution
changes from a dominant-strategy equilibrium to a best-response equilibrium. The GBM
with equal endowments always has a second, payoff-dominant and highly efficient, asym-
metric equilibrium. In this equilibrium, as long as the within-group interaction has social
dilemma properties (or 1/φ < m < 1), all players contribute fully with the exception of
cR < φ players7 who contribute nothing. GVSM call this payoff dominant equilibrium
a “near-efficient equilibrium” (NEE) because it asymptotically approaches full effi-
ciency as the number of players becomes large. The GBM’s payoff-dominant equilibrium
becomes more complex when unequal endowments are added.

A GBM with two different endowment levels (2-Type GBM)

We now change the basic GBM so that there are two different endowment levels.8 Some
players have high endowments, others low endowments. This is common knowledge. We
henceforth denote the high endowment wi as H and the low wi as L.

Incentives under two different endowment levels. Recall that as long as the within-
group interaction has social dilemma properties, the mechanism always has a best-response
equilibrium of non-contribution by all. With the unequal distribution of endowments
common knowledge, players with endowment wi = L (henceforth “Lows”) might not
feel motivated to contribute. This in turn would affect the expected payoffs of players
with endowment wi = H, (“Highs”), and could drive the system toward the inefficient
equilibrium rather than the NEE. However, this is not the case in our experiment: Even
though Lows can never aspire to the level of earnings that Highs can achieve, the 2-Type
GBM elicits high social contributions from Highs and Lows alike, and the NEE is reliably
realized.

Increased NEE complexity under two different endowment levels. One might expect
that the 2-Type GBM’s NEE might be hard to coordinate because of its complexity.

pure strategy equilibrium predicts very well here. (2) mixed strategies are intuitively implausible when
there is no stringent need to play unpredictably, and pure equilibrium strategies are available to players
(see, e.g., Kreps, 1990, pp. 407-410; Aumann, 1985, p. 19). (3) Even in games with a unique equilibrium
in mixed strategies, proper mixing (both the right proportions of choices and their serial independence)
is usually beyond regular subjects’ abilities (see, e.g., Palacios-Huerta & Volij, 2008; Walker & Wooders,
2001; Brown & Rosenthal, 1990; Erev & Roth, 1998). (4) GVSM report that their subjects do not play
mixed strategies.

7GVSM denote cR by z.
8By introducing unequal endowments, we make players’ world less fair even though it is not exactly an

ascriptive (Linton, 1936) system. Note though that Rawls (1971) explicitly included differing abilities in
the Lottery of Birth. Unequal abilities to contribute still allow players some control over their grouping,
but within constraints which are again Lottery of Birth based (exactly what a meritocracy often claims to
overcome). In a meritocracy with differential abilities to contribute, ability thus constitutes a ceiling to
what an individual can aspire to, even though within these constraints, she determines her contribution
levels and through them, her social position. Fair or not, ability to contribute is a significant determinant
of social position in contemporary societies. For example, IQ is the strongest single predictor of socio-
economic status (see, e.g., Grusec, Lockhart & Walters, 1990; Herrnstein & Murray, 1996, Ch. 3.)
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High demands are put on subjects’ ability to tacitly coordinate. In the game tested
experimentally in Sections 4 and 5, the NEE consists of three corner strategies. Subjects
thus must (1) somehow grasp that they should not play strategies drawn from the interior
of their strategy spaces, {0, 1, ..., 80} for Lows, and {0, 1, ..., 120} for Highs, respectively,
and (2) tacitly coordinate the three equilibrium strategies, 0, 80, and 120 in the correct
proportions. This is complicated by the fact that (3) this NEE is not obvious, as reflected
by the length of the analytical derivation of the conditions for its existence (Section 3). As
mentioned, we ourselves have discovered only one reliable method of finding this NEE—
the gradual elimination of strategy combinations by searching for incentives to deviate
focusing first on the necessary conditions for an equilibrium with positive contributions,
then on the sufficient conditions. 4) The 2-Type GBM’s NEE can be ephemeral in that
its exact structure, even its existence, is often parameter dependent (see Examples 2 and
5 in Sections 3.2 and 3.3, respectively; see also Section 3.5). We show here below that
different equilibrium predictions can be generated by slightly modifying the experimental
parameters. Since both GVSM and the authors of this paper find that subjects coordinate
the GBM equilibria quite precisely, such parameter changes should lead to discernibly
different aggregate behavior.

3 Theory

Before formally describing the equilibria of the game and their properties, we provide (1)
an intuitive account of the equilibria of the 2-Type GBM, and (2) a brief overview of
the formal steps by which the equilibria are derived, highlighting some of the theoretical
findings and the examples that suggest future experimental tests.

We first introduce three terms, formally defined in Section 3.1. A group is the
cooperative unit whose members equally share the earnings from their public account.
Ranking all players by their contributions from highest to lowest with ties broken at
random and then grouping them into G groups, one can define three general kinds of
groups: the first group, Group 1, contains the top φ contributors, the last group, Group
G, contains the bottom φ contributors, and any group in between is designated as an
“intermediate group”. A player’s type is defined by her endowment, so that a player is
either a “High” or a “Low”. A class is a subset of players whose public contributions
are identical. The first class C1 is the subset whose members contribute the most, C2 the
next class whose members contribute less, and so on; the last class CR is the subset who
contribute least.

An intuitive account of the 2-Type GBM’s equilibria

We focus first on the simpler (GVSM’s) version of the mechanism where all endowments wi

are equal, then extend the same reasoning to the 2-type case.9 Firstly, non-contribution by

9For illustration purposes we describe a case with three or more groups. The case with two groups only
is easily inferred in a similar fashion.
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all is clearly an equilibrium—no single individual has an incentive to increase her contribu-
tion if everyone else contributes nothing. Are there equilibria with positive contributions?
It can be verified that in an equilibrium with positive contributions, a group cannot con-
tain players from three classes, since each player in the middle class could decrease her
contribution by a small ε and remain in the same group. Therefore, if an equilibrium with
positive contributions exists, each group must contain either one or two classes of players.

We next examine the three different kinds of groups separately: Group 1 can only
contain one class, C1: if it had two classes, any member of C1 would have an incentive to
decrease her contribution by a small ε and remain in Group 1 nonetheless, enjoying the
top earnings associated with such a position. For the same reason the number of players
in C1 must be greater than the group size φ and not divisible by φ. It is also easy to show
that members of C1 must contribute their full endowments: If they do not contribute
fully, each C1 member has an incentive to increase her contribution and thus her earnings,
because her expected earnings are higher if she is with certainty in Group 1 than if she is
grouped with some positive probability with lower classes in a lower group.

We now examine whether the first intermediate group, Group 2, could possibly contain
individuals from the next class, C2. We already know from the previous paragraph that
Group 2 must already contain at least one full contributor. Since groups can contain either
one or two classes, there are two cases to consider with regard to the composition of the
other players in Group 2. (1) All other members of Group 2 also contribute fully, or (2)
all its other members belong to the next class, C2, whose members contribute less. We
next examine case (2) and show that it is impossible if endowments are equal: Following
similar logic as laid out with regard to Group 1 membership, if there were C2 players in
Group 2, C2 must extend into the next intermediate group (Group 3) else there cannot
be an equilibrium: if C2 did not extend into Group 3, any C2 player could decrease her
contribution and stay in Group 2. Assume now C2 does extend to Group 3: in such
a case any C2 player will increase her contribution so that she can be in Group 2 with
certainty, and can free ride off the full contributor(s) already in Group 2. This shows that
in an equilibrium with positive contributions members of any intermediate group must
contribute fully.

What about Group G? It is clear that Group G cannot contain one class only, because
from above it follows that it already has at least one full contributor. If all members of
Group G are full contributors, then everyone has an incentive to free ride and contribute
nothing. Hence, Group G must contain two classes. Also, the individuals in its lower class
CR contribute nothing, else any one of them has an incentive to lower her contribution,
since she would remain in Group G nonetheless.

In order to find a stable point where the system is in equilibrium and no player has an
incentive to unilaterally deviate, one needs to determine how many zero-contributors are
needed in Group G. GVSM derived the conditions for the existence of such an equilibrium
for the case with homogeneous endowments, and called it a “near-efficient equilibrium”
(NEE).

Does a similar equilibrium exist when there are two endowment levels? Following the
same logic as above, one can verify that non-contribution by all is still an equilibrium; in
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an equilibrium with positive contributions each group still must have either one or two
classes; Group 1 can still only have one class of full contributors; the number of C1 players
must still be greater than the group size φ and not divisible by φ. However, differences
arise in the first intermediate group, Group 2, which might contain players which are in
C2 by necessity, because of their lower endowment. Group 2 can thus have either (1)
one class or (2) two classes, if some Group 2 members are Lows who would want to, but
cannot, contribute as much as the Highs do. It follows that one intermediate group with
two classes must exist in an equilibrium with positive contributions if there are more than
φ Lows and more than φ Highs in the system. By the same logic as above it follows that
in this case C2, consisting of fully contributing Lows, must extend to the intermediate
groups below this mixed group, and that all intermediate groups below the mixed group
can have only one class.

What about Group G,the last group? Since we showed that a group can never contain
more than two classes, we know that Group G has either (1) one or (2) two classes. By
the logic laid out above for the case with homogeneous endowments, in case (2) the lower-
class players must contribute zero in equilibrium. We will show formally here below that
both (1) and (2) can be equilibria depending on the parameters. We call (1), the configu-
ration where Group G consists of full contributors only, a “fully efficient equilibrium”
(FEE). (2) corresponds to the “’near-efficient equilbrium” (NEE) originally defined
by GVSM. We now provide a brief overview of our formal analysis and highlight its most
important findings about the impact of unequal endowments.

The game defined

In Assumption 1 (Section 3.1) we formally restrict the endowment wi to two levels, H
or L. Without loss of generality we let L = 1 and H = (1 + ∆w) where ∆w > 0. We
will examine the effect of change in ∆w in depth.10 In Assumption 2 (Section 3.1) we
restrict the distribution of player types, Highs and Lows, in the following manner: type
count is not fully divisible by group size, and for each type its count, nH or nL, must
exceed the group size φ.

The reason for these restrictions is as follows: (1) The current section and Appendix A
make it clear that even with these assumptions in place the process of finding the equilibria
of the 2-Type GBM is lengthy and cumbersome. Relaxing Assumptions 1 and 2 would
mean that there would be numerous additional cases to consider, each of which requires the
same detailed examination of all possible strategy combinations as contained in Section
3.11 (2) Cases that satisfy Assumption 2 are the most interesting since a distribution
of types as stipulated by Assumption 2 encourages competition for group membership.
Recall that, in any GBM, ties for group membership are broken at random, and that
equilibrium payoffs are expected payoffs, computed before the random resolution of ties
puts players in specific groups. For an equilibrium with positive contributions in the cases

10In the experimental test in Sections 4 and 5 L = 80 tokens and H = 120 tokens so that ∆w = 0.5.
11Some simple examples of cases where Assumption 2 is relaxed: nH and nL are divisible by φ; nH or

nL equals φ; nH < φ; nL < φ, etc.. Relaxing Assumption 1, too, creates a large array of different cases.
Many of these cases are interesting, and are being developed in separate papers.
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of the GBM studied so far (GVSM’s and ours) there must be competition between players
for group membership.

The equilibrium of non-contribution by all

In Section 3.2 we first show the omnipresence of an equilibrium of non-contribution by
all. This is the only equilibrium of the game where all players use the same strategy. This
equilibrium is always present as long as the MPCR m is within the bounds that make the
within-team interaction a social dilemma (Lemma 1).

Equilibria with positive contributions

We focus first on the necessary conditions for equilibria with positive contributions, see
Section 3.2. Theorem 1 states that there are only two equilibrium configurations with
positive contributions possible; both are asymmetric and consist of corner strategies: (1)
a FEE where both types contribute fully, (2) a NEE where all players contribute fully
with the exception of cR < φ players12 who contribute zero. The two equilibria are
depicted in Figure 3.1. Appendix A contains the proof of Theorem 1; it involves the usual
process of gradual elimination, including the step-by step elimination of initial “equilibrium
candidate” E’ by searching for incentives by individual players to deviate.

In Section 3.2 we also apply Theorem 1 to three examples relevant to experimental
testing or previous literature: In Example 1 we derive the equilibrium with positive
contributions of the version of the 2-Type GBM experimentally tested in Sections 4 and 5,
and show that it must be a NEE. Example 2 illustrates that not all 2-Type GBMs have
an equilibrium with positive contributions: We slightly modify the type composition of
the experimental game in Example 1 so that only the equilibrium of non-contribution by
all remains. In Example 3 we connect our general analysis to GVSM’s original analysis
of a GBM when endowments are all equal. We show that if endowments are equal a FEE
cannot exist, only a NEE is possible.

When is a fully efficient equilibrium (FEE) possible?

In Sections 3.3 and 3.4 we explore the conditions for the existence of FEE and NEE
respectively, by examining all players’ incentives to deviate. In this process we always
start with the lowest class. While lengthy and cumbersome, the process is rather straight-
forward. We draw attention to Theorem 2 in Section 3.3, which states (subject to the
constraints specified in Remarks 2 and 3 in Section 3.3) that the existence of a FEE
depends on a combination of parameters including the group size φ, the count of Highs
and Lows in the system (nH and nL, respectively), and the MPCR m. A FEE’s existence
also depends on ∆w, the difference between the high and the low endowment. Theorem
2 implies that if this difference increases, efficiency increases rather than decreases until a
fully efficient equilibrium (FEE), rather than a NEE, is possible.

12As originally shown by GVSM, cR ,which they denote as z, is MPCR-dependent.
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Theorem 2 has practical implications: it allows building a mechanism that is fully
efficient by intervening upon the parameters. In the field, ∆w may be fixed at least in
the short run; same for nH and nL, the distribution of the two types in a community or
society. However, the gains from cooperation m and with it, M , could for example be
changed through managerial tools that increase team productivity. It might however be
easiest to intervene through the team size φ, which in turn determines h = nH mod φ
and ` = nL mod φ.

Three remarks in Section 3.3 elaborate further on Theorem 2: if the MPCR m ap-
proaches 1 from below, full contribution by all becomes an equilibrium (Remark 1). (Of
course, if m > 1, it is a dominant strategy to contribute fully as it is in the VCM). Re-
marks 2 and 3 focus on the effect of ∆w, the difference in ability to contribute: If ∆w is
small, a FEE is impossible (Remark 2, compare to Example 3 in Section 3.2). However,
while a large ∆w is a necessary condition for a FEE, it is not sufficient. Cases can be
found where ∆w is large yet no FEE exists (Remark 3). Example 4 illustrates how a
FEE can be found combining Theorem 2 with a graphical approach. In Example 5 we
apply Theorem 2 to our experimentally tested version of the mechanism, where L = 80
and H = 120, and find that if H were raised to 200(2.5 × L), a FEE would replace the
current NEE.

Existence of a near-efficient equilibrium (NEE)

The exact type composition of a NEE is parameter dependent with regard to the last
class of cR < φ non-contributors: In our experimental game with three groups of four
players each, the last class CR consists of Lows. However, as the bottom right of Figure
3.1 shows, if the group size or the number of groups increases, CR might also contain
Highs. However, cR < φ does not change with this, so that the NEE’s efficiency is not
affected much. To the best of our knowledge, a NEE can be discovered only through a
gradual elimination process of strategy configurations. The length and complexity of the
analysis can be seen in Theorem 3 in Section 3.4. We also use specific examples to
show that a NEE exists, and to illustrate as best we can the conditions under which this
happens (see Examples 1, 2, 5).

Can NEE and FEE coexist?

Section 3.5 demonstrates that it is possible to construct a case where FEE and NEE
co-exist. Example 5 already illustrated that if H ≥ 2.5, our experimental game would have
a FEE rather than a NEE. Section 3.5 shows that at the exact point where H = 2.5,
a weak NEE and a weak FEE coexist: one L-player is indifferent between contributing
and not contributing.

3.1 Model

The set of players is N ≡ {1, . . . , n}. Each player i ∈ N has an endowment wi > 0. The
distribution of endowments is common knowledge. Each player i ∈ N makes a contribution
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si ∈ [0, wi] to a public account, and keeps the remainder (wi − si) in her private account.
The return from the private account is without loss of generality set to 1, the return from
the public account is the Marginal per Capita Return (MRCP) m ∈

(
1/φ, 1

)
. So far, this

game is a standard VCM.

� Players compete for group membership

Our model however differs from the VCM in the following way: After their investment
decisions, all players are ranked according to their public contributions and divided into
G groups of equal size φ, so G = n/φ. Ties for group membership are broken at random.
The φ players with the highest contributions are put into Group 1; then φ players with
the next highest contributions are put into Group 2, and so on. Payoffs are computed
after players have been grouped. Each player’s payoff consists of the amount kept in her
private account, plus the total public contribution of all players in the group she has been
assigned to multiplied by the MPCR m.

Given the other players’ contributions (s1, . . . , si−1, si+1, . . . , sn) ≡ s−i, let Ui (si, s−i)
be player i’s expected payoff from contributing si. Let Pr

(
k | si, s−i

)
be i’s probability

of entering group k when the contribution profile is (si, s−i) ≡ s, where k = 1, . . . , G;
for simplicity we henceforth denote this probability by Pr

(
k | si

)
. Let Sk

−i be the total
contribution in group k except for player i. Therefore, player i’s expected payoff Ui (si, s−i)
from a contribution combination s = (si, s−i) can be expressed as follows:

Ui (si, s−i) = (wi − si) +
G∑

k=1

Pr
(
k | si, s−i

)
·
[
m ·

(
Sk
−i + si

)]
. (1)

� Formally defining the game

We can now transform this into a normal form game. The set of players is N ; each player
i’s strategy is her contribution si. Her strategy space is the interval [0, wi] ⊆ R; finally,
player i’s payoff function is defined by (1) for all i ∈ N . The Nash equilibrium is defined
as follows:

Definition 1 (Nash equilibrium). A contribution profile s = (s1, . . . , sn) is a Nash
equilibrium if and only if

Ui (s) ≥ Ui

(
s′i, s−i

)
,

for all s′i 6= si and all i ∈ N .

So far this game is a standard GBM as originally defined by GVSM, where wi is
the same for all players. We now increase the game’s complexity with the following two
assumptions:

Assumption 1 (Two different endowment levels). Each player’s endowment is either
wi = H or wi = L < H.

12



For what follows, we apply the following simplification without loss of generality: we
normalize L = 1, and let ∆w ≡ H−1 > 0 be the gap between the high endowment H and
low endowment L = 1. We call a player with endowment H a “High”, and a player with
endowment 1 a “Low”. NH is the set of Highs. NL is the set of Lows. Their respective
counts are nH ≡ |NH | and nL ≡ |NL|. It follows that NH ∪ NL = N , or equivalently,
nH + nL = n. Further, one can find some nonnegative integers A, B, h < φ, and ` < φ,
such that the counts of Highs and Lows can be expressed as:

nH = Aφ+ h, and nL = Bφ+ `.

Assumption 2 (Distribution of player types whose endowments differ). The
count of each type, High and Low, is more than, and not a multiple of, the group size φ,
that is,

• A ≥ 1, B ≥ 1, and A+B = G− 1;

• h ≥ 1, ` ≥ 1, and h+ ` = φ.

We need to define one more basic concept, which will be crucial when we identify all
the game’s equilibria, namely a “class”:

� The concept of “class”

Definition 2 (Class). Let Cr ⊆ N . We call Cr a class if each player i ∈ Cr contributes
the same, that is, i, j ∈ Cr if and only if si = sj. We call a player i ∈ Cr a Cr-player.

Given a contribution profile s, the players can be divided into R (s) ≤ n classes; we
henceforth omit the argument s. Let C be the family of all classes, i.e., C ≡ {C1, . . . , CR}.
Both C and {NH , NL} partition N , that is,

⋃R
r=1Cr = NH ∪NL = N . In a class Cr ∈ C ,

there are cr players; the contribution of each player in Cr is sr, that is, |Cr| ≡ cr, and
si = sr for all i ∈ Cr. We index the classes such that sr+1 < sr, where r + 1 ≤ R; hence,
C1 is the class consisting of the highest contributors, and CR is the class consisting of the
lowest contributors. For each class Cr, we can find nonnegative integers Dr and c̃r < φ
such that the count of Cr-players can be expressed as

cr ≡|Cr| = Dr · φ+ c̃r. (2)

3.2 Formal description of the 2-Type GBM‘s three equilibria

� The equilibrium of non-cooperation by all Is always present

Lemma 1 (Equilibrium of non-contribution by all). si = 0 for all players i ∈ N is
a Nash equilibrium. This is the only equilibrium satisfying |C | = 1.

Proof. Let sj = 0 for all players j 6= i. Player i obtains (wi − si) +msi = wi − (1−m) si
if she contributes si. Her best response is therefore si = 0.
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To verify that si = 0 for all players i ∈ N when |C | = 1, let s1 > 0. Consider any
player i ∈ N . She gets

(
wi − s1

)
+ mφs1 if she contributes s1, but if she deviates and

contributes 0, she enters the last group G, and gets

wi +m (φ− 1) s1 =
(
wi −ms1

)
+mφs1 >

(
wi − s1

)
+mφs1

since m < 1. Hence, si = 0 for each player i ∈ N in an equilibrium with only one class.

The equilibrium with si = 0 for all i ∈ N always exists as long as the MPCR m < 1.
It is however not a dominant response equilibrium. Theorem 1 here below defines the
necessary conditions for equilibria with positive contributions. Since si = 0 for all i ∈ N
if |C | = 1 by Lemma 1, in any equilibrium with positive contributions it must be that
|C | ≥ 2.

� The two equilibria involving positive contributions

This section will show that there are two equilibria involving positive contributions: (1) a
fully efficient equilibrium (FEE), and (2) a near-efficient equilibrium (NEE):

FEE : There are two classes: C1 is identical to NH , and C2 is identical to NL. All players
contribute fully, that is:

• Classes: |C | = 2, where C1 = NH and C2 = NL.

• Strategies: si =

{
H, if i ∈ C1

1, if i ∈ C2.
.

NEE : There are three classes: C1 consists of Highs, C2 consists of Lows, and C3 consists
of the players who are not in C1 or C2. Both C1 and C2-players contribute fully,
but C3-players contribute nothing. The sum of C2 and C3-players together is greater
than, and not a multiple of, group size; the count of C3-players is less than the group
size, that is:

• Classes: |C | = 3, where


C1 ⊆ NH , c1 > φ and c̃1 > 0

C2 ⊆ NL, c2 + c3 > φ, and c̃2 + c̃3 6= φ

C3 = N \ (C1 ∪ C2) and c3 < φ.

• Strategies: si =


H, if i ∈ C1

1, if i ∈ C2

0, if i ∈ C3.

In both equilibria with positive contributions, strategies only take one of three forms:
full contribution of the high endowment (H), full contribution of the low endowment
(L=1), or zero contribution. Figure 3.1 illustrates FEE and NEE. The dark gray
sections in the horizontal bars represent Highs, the light gray sections represent Lows.
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The players’ strategies si are shown above the horizontal bars, the corresponding class is
shown below. The segments in the bars represent groups. For illustration purposes and
without loss of generality, only four groups are shown.

FEE:

C1 C2

s1 = H s2 = 1

Group (A+ 1) Group G

NEE:

C1 C2 C3

s1 = H s2 = 1 s3 = 0

Group (D1 + 1) Group G

Figure 3.1: The two equilibrium configurations with positive contributions (light grey sections
are Lows, dark grey sections are Highs)

Theorem 1. If there is an equilibrium with positive contributions, then it is a FEE or
NEE.

Proof. Appendix A.

� Applications of Theorem 1

In Example 1 we derive the equilibrium of the game tested experimentally in Sections 4 and
5. Example 2 shows that a specific version of the 2-Type GBM does not have an equilibrium
with positive contributions. In Example 3 we apply Theorem 1 to a situation where all
endowments are equal, and show that the only equilibrium with positive contributions
possible in such a situation is a NEE.

Example 1 (Deriving the experimental NEE). Let n = 12, nH = nL = 6, φ = 4,
L = 1 and H = 1.5 (in our experimental test, L = 80 tokens and H = 1.5L = 120 tokens).
According to Theorem 1 we only need to consider FEE and NEE:

There is no FEE here since any player i ∈ C2 has an incentive to reduce her contri-
bution: If i contributes 1, she enters the second group with probability 2/6, and the third

group with probability 4/6, so the expected payoff is 0.5 ×
(

2
6 × 5 + 4

6 × 4
)

= 13/6, but

if she contributes 0, she enters the third group with certainty and obtains 1 + 0.5 × 3 =
5/2 > 13/6.

Hence, if there exists an equilibrium with positive contributions, it must be a NEE.
As the following table shows, the unique equilibrium with positive contributions is(

〈1.5, 1.5, 1.5, 1.5〉 , 〈1.5, 1.5, 1, 1〉 , 〈1, 1, 0, 0〉
)
.13

13This corresponds to
(
〈120, 120, 120, 120〉 , 〈120, 120, 80, 80〉 , 〈80, 80, 0, 0〉

)
in experimental tokens.
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c1 c2 c3 NEE? Deviator
Deviation(
si → s′i

)
5 6 1 No i ∈ C2 ⊆ NL 1→ 0
5 5 2 No i ∈ C3 ∩NH 0→ 1 + ε
5 4 3 No i ∈ C3 ∩NH 0→ 1 + ε
6 5 1 No i ∈ C2 ⊆ NL 1→ 0
6 4 2 Yes ∅
6 3 3 No i ∈ C3 ∩NL 0→ 1

Example 2 (No equilibrium with positive contributions exists). In a game with
parameters as in Example 1, now let nH = 7 instead of previously 6. It can be verified
that there is no FEE. By Theorem 1, it suffices to show that there is no NEE either.
There are eight cases to consider:

c1 c2 c3 NEE? Deviator
Deviation(
si → s′i

)
5 5 2 No i ∈ C3 ∩NH 0→ 1 + ε
5 4 3 No i ∈ C3 ∩NH 0→ 1 + ε
6 5 1 No i ∈ C2 ⊆ NL 1→ 0
6 4 2 No i ∈ C3 ∩NH 0→ 1 + ε
6 3 3 No i ∈ C3 ∩NH 0→ 1 + ε
7 4 1 No i ∈ C2 ⊆ NL 1→ 0
7 3 2 No i ∈ C1 = NH H → 1 + ε
7 2 3 No i ∈ C1 = NH H → 1 + ε

Example 3 (If endowments are all equal, the only equilibrium with positive
contributions possible is a NEE). This example relies on some results in Appendix
A. The general method developed so far can be used to reprove GVSM’s Observation 2.
GVSM’s parameter z corresponds to cR = |CR|, the number of players in the last class.
If H = L = 1 and if there exists an equilibrium with positive contributions, it can be
characterized as follows:

|C | = 2, s1 = 1, s2 = 0, and c2 < φ.

Proof. By Lemma A.1(a) (in Appendix A), in any equilibrium with positive contributions
c1 > 0, c̃1 > φ, and s1 = 1. Now consider the last class CR:

1. If cR > φ and c̃R > 0 in equilibrium, then sR = 1 by Claim 1 (Appendix A). However,
this means that |C | = 1 and c̃1 = 0, a contradiction to Lemma A.1(a).

2. Assume c̃R = 0 in equilibrium. Then s2 = 0 by Lemma A.1(e). By the same logic
as in Lemma A.1(c), there cannot exist a class Cr satisfying 0 < sr < 1; hence,
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|C | = 2. According to Lemma A.1(a) c̃1 > 0. If c̃2 were zero, it would contradict our
initial assumption at the beginning of Section 3.1 that the total number of players
n = G · φ.

3. Thus, it must be that cR < φ. It follows that sR = 0 by Lemma A.1(e). An argument
analogous to Lemma A.1(c) shows that |C | = 2.

3.3 Existence of a fully efficient equilibrium (FEE)

A FEE exists if and only if

• Player i ∈ C2 has no incentive to reduce her contribution from 1 to 0, and

• Player i ∈ C1 has no incentive to reduce her contribution from H to 1 + ε, 1, or 0,
where ε is a small positive real number;

We first consider C2, then C1. We use Uwi
si (Cr) to denote player i’s expected payoff when

her endowment is wi ∈ {H, 1}, she contributes si ∈ [0, wi], and is in class Cr. We develop
our analysis with the help of Figure 3.2.

s1 = H s2 = 1

c1 = nH = Aφ+ h c2 = nL = Bφ+ `

h ` φ

Group (A+ 1) Group G

Figure 3.2: The distribution of players in a FEE

Theorem 2. Let M ≡ 1−m
m . A FEE exists if and only if

M · nL
∆w · ` ≤ h ≤ min

{[
(φ− 1) ∆w −MH

]
· nH

∆w · ` ,
(`−M) · nH

`

}
. (3)

In the remainder of this section we account for Theorem 2 by examining players’
incentives to deviate.

� Incentives to deviate for C2-players in a FEE

Fix the contribution profile s−i ≡ (s1, . . . , si−1, si+1, . . . , sn) satisfying sj = wj for all
j ∈ N \ {i}. For any player i ∈ C2 = NL, if she contributes 1, she enters the following
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groups with positive probabilities: A+ 1, A+ 2, . . . , G (see Figure 3.2). The probabilities
are:

Pr
(
k | 1

)
=

{
`/nL, if k = A+ 1

φ/nL, if k = A+ 2, . . . , G.

Since
∑G

k=A+1 Pr
(
k | 1

)
= 1, we have

∑G
k=A+2 Pr

(
k | 1

)
= 1 − Pr

(
A+ 1 | 1

)
= 1 − `

nL
.

For ease of expression, let
SA+1 ≡ hH + `,

that is, SA+1 is the sum of contributions in Group (A+ 1) from the full contribution
profile s = (si = 1, s−i). By (1), player i’s expected payoff from contributing si = 1 is

UL
1 (C2) = (wi − si) +m

Pr
(
A+ 1 | 1

)
· SA+1 +

G∑
k=A+2

[
Pr
(
k | 1

)
· φ
]

= (1− 1) +m

Pr
(
A+ 1 | 1

)
· SA+1 +

 G∑
k=A+2

Pr
(
k | 1

) · φ


= m

[
`

nL
SA+1 +

(
1− `

nL

)
φ

]
〈1〉
= m

(
φ+

h`∆w

nL

)
,

where equality 〈1〉 holds since SA+1 − φ = (hH + `)− (h+ `) = h (H − 1) = h∆w.
If player i ∈ C2 deviates and contributes si < 1, she enters group G, and her payoff is

(1− si) +m
[
(φ− 1) + si

]
= 1 +m (φ− 1)− (1−m) si;

hence, the optimal deviation is si = 0 since 1 − m > 0 with payoff is UL
0 (C2) = 1 +

m (φ− 1).
It follows that player i ∈ C2 has no incentive to reduce her contribution from 1 to 0 if

and only if UL
1 (C2) ≥ UL

0 (C2), that is,

h ≥ (1−m)nL
m` ·∆w ≡ M · nL

` ·∆w , (4)

where M ≡ (1−m) /m. Because m ∈
(
1/φ, 1

)
, we know that M ∈ (0, φ− 1).

� Incentives to deviate for C1-players in a FEE

Since we now consider a player i ∈ C1 = NH , we rewrite the full contribution profile as
s = (si = H, s−i), where sj = wj for any j ∈ N \ {i}. If player i ∈ C1 contributes si = H,
she enters Group 1, 2, . . . , A,A+ 1 with positive probabilities, which are

Pr
(
k | H

)
=

{
φ/nH , if k = 1, . . . , A

h/nH , if k = A+ 1.
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Hence, i’s expected payoff from contributing si = H is

UH
H (C1) = (H −H) +m


 A∑
k=1

Pr
(
k | H

) · φH + Pr
(
A+ 1 | H

)
· SA+1


〈1〉
= m

[(
1− h

nH

)
φH +

h

nH
SA+1

]
〈2〉
= m

(
φH − h`∆w

nH

)
,

where 〈1〉 holds because
∑A

k=1 Pr
(
k | H

)
= 1−Pr

(
A+ 1 | H

)
= 1− h/nH , and 〈2〉 holds

because φH − SA+1 = φH − (hH + `) = `H − ` = `∆w.
If player i ∈ C1 contributes si ∈ (1, H), she enters group (A+ 1) with certainty and

obtains

UH
si (C1) = (H − si) +m

[
(h− 1)H + `+ si

]
= H +m

[
(h− 1)H + `

]
− (1−m) si.

(5)

From (5) we know that the optimal deviation is si = (1 + ε) → 1 if player i ∈ C1 wants
to contribute si ∈ (1, H). Thus,

lim
ε→0

UH
1+ε (C1) = lim

ε→0

{
H +m

[
(h− 1)H + `

]
− (1−m) (1 + ε)

}
= H +m

(
SA+1 −H

)
− (1−m)

= mSA+1 + (1−m) ∆w.

Hence, player i ∈ C1 has no incentive to reduce her contribution from H to 1 + ε if
and only if UH

H (C1) ≥ limε↓0 U
H
1+ε (C1), that is

h ≤ nH
(

1− M

`

)
. (6)

Note that (6) is independent of H or ∆w: it is fully determined by the distribution of
player types and the MPCR m.

Lemma 2 here below indicates that we do not need to consider whether i ∈ C1 has an
incentive to contribute 1 if she has no incentive to contribute 1 + ε.

Lemma 2. If a player i ∈ C1 has no incentive to reduce her contribution from H to 1+ε,
she also has no incentive to reduce her contribution from H to 1.

Proof. If player i ∈ C1 contributes 1, she enters Groups A+ 1, A+ 2, . . . , G with positive
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probabilities. Therefore, her expected payoff from contributing 1 is

UH
1 (C1) = (H − 1) +m

Pr
(
A+ 1 | 1

)
·
[
(h− 1)H + `+ 1

]
+

G∑
k=A+2

[
Pr
(
k | 1

)
· φ
]

= ∆w +m

Pr
(
A+ 1 | 1

)
·
(
SA+1 −∆w

)
+

 G∑
k=A+2

Pr
(
k | 1

) · φ


〈1〉
≤ ∆w +m

{
Pr
(
A+ 1 | 1

)
·
(
SA+1 −∆w

)
+
[
1− Pr

(
A+ 1 | 1

)]
·
(
SA+1 −∆w

)}
= mSA+1 + (1−m) ∆w

= lim
ε→0

UH
1+ε (C1) ,

where 〈1〉 holds because SA+1 −∆w = (hH + `)− (H − 1) =
[
hH + (φ− h)

]
−H + 1 ≥

(H + φ− 1)−H+1 = φ. Therefore, UH
H (C1) ≥ UH

1 (C1) when UH
H (C1) ≥ limε→0 U

H
1+ε (C1).

Finally, if player i ∈ C1 wants to contribute si < 1, she should contribute si = 0, so
that her payoff is UH

0 (C1) = H + m (φ− 1). Hence, she has no incentive to contribute 0
if and only if UH

H (C1) ≥ UH
0 (C1), that is,

h ≤
[
(φ− 1) ∆w −MH

]
· nH

∆w · ` . (7)

Combining (4), (6) and (7), one obtains Theorem 2.

� Comparative statics of the FEE and two examples

Remark 1. It can be seen from (3) that when m is large enough, the FEE is an equi-
librium for all possible parameters of the game. To illustrate, consider the extreme case:

Let m→ 1, then limm→1M = limm→1

(
1−m
m

)
= 0. Then the left-hand side (LHS) of (3)

approaches 0, the right-hand side (RHS) of (3) becomes

min

{
(φ− 1)nH

`
, nH

}
= nH ,

and 0 ≤ h ≤ nH always holds. This result is intuitive: m→ 1 means that if a player puts
one dollar into the public account, her strategic risk becomes negligible.

Remark 2. In a FEE, the gap between Highs and Lows, ∆w, cannot be very small.
This result might strike the reader as counterintuitive since it implies that equality (in wi)
prevents a fully efficient solution. Consider once again the extreme case. Fixed all other
parameters and let ∆w → 0, then

lim
∆w→0

M · nL
∆w · ` = +∞ > h
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so that (3) is violated. This result corresponds to GVSM (2009): when all players have
the same endowment, it is not an equilibrium that all contribute fully.

Remark 3. Although a large enough ∆w is a necessary condition for the existence of a
FEE, it is not sufficient. To see this, let H → +∞, so that ∆w → +∞, too; then (3)
becomes

0 ≤ h ≤ min

{
(φ− 1−M)nH

`
,
(`−M)nH

`

}
=

(`−M)nH
`

. (3′)

We can see that there exist ` and M such that (3′) fails. In particular, if M → (φ− 1)
or equivalently, m→ 1/φ, then there is clearly no FEE no matter how high H is and no
matter what the distribution of types is, since ` ≤ (φ− 1).

Example 4 (Numerical application of Theorem 2). Let m = 0.5 [so M ≡ 1−m
m = 1],

φ = 4, n = 24, H = 3. We refer to Figure 3.3. In the figure, each point nH on the
horizontal axis determines a particular ` according to the equation nL = n−nH = Bφ+ `,
and such an ` determines: (a) the h by the equation h = φ − ` [the black dashed line],
(b) the (3)-LHS [the blue curve], and (c) the (3)-RHS [the orange curve]. Thus, if there
is a h determined by a nH that lies between the blue and orange curve, then there exists
a FEE by Theorem 2.

{ = 2

h = 2

(3)-RHS

(3)-LHS

6 8 10 12 14 16 18 20
nH

2

4

6

8

10

12

Figure 3.3: FEE

Figure 3.3 indicates that there is a FEE if and only if nH = 18. Note that nH = 4A+h
yields h = ` = 2 [the red point in the figure]; furthermore, nL = n−nH = 6, (3)-LHS = 1.5,
and

(3)-RHS = min

{
(3× 2− 3)× 18

2× 2
,
(2− 1)× 18

2

}
= 9;

thus, 1.5 < h = 2 < 9, that is, (3) holds. We now show it is indeed an equilibrium:

In equilibrium, i ∈ C2 gets 0.5×
(

2
6 × 8 + 4

6 × 4
)

= 2.7. If she contributes 0, she gets

1 + 0.5× 3 = 2.5 < 2.7. Hence, i ∈ C2 has no incentive to deviate.
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In equilibrium, i ∈ C1 gets 0.5 ×
(

16
18 × 12 + 2

18 × 8
)

= 5.8; If she contributes 1 + ε,

she gets no more than 0.5 × 8 + (1 − 0.5) × 2 = 5, which is less than 5.8; finally, if she
contributes 0, she gets 3 + 0.5 × 3 = 4.5 < 5.8. Hence, i ∈ C1 also has no incentive to
deviate.

Example 5 (Finding the experimental FEE). In a game with parameters as in
Example 1, now let H be unspecified. We want to find an H such that there exists a
FEE. According to (3), H has to satisfy h = 2 ≥ 6

2(H−1) , which solves for H ≥ 2.5.

Because (3)-RHS holds when H ≥ 2.5, this concludes the calculation. In light of this, in
our experimental setup where Lows have an endowment of 80 tokens each, and Highs 120
tokens, the endowment of the Highs would need to be raised from 120 tokens to at least
200 tokens for a FEE rather than a NEE to emerge.

3.4 Existence of a near-efficient equilibrium (NEE)

The NEE exists if and only if

• player i ∈ C3 ∩NL has no incentive to increase her contribution from 0 to 1,

• player i ∈ C3 ∩NH has no incentive to increase her contribution from 0 to 1 + ε or
H,

• player i ∈ C2 ∩NL has no incentive to reduce her contribution from 1 to 0,

• Player i ∈ C1∩NH has no incentive to reduce her contribution from H to 1 + ε or 0.

Since Example 1 (Deriving the Experimental NEE (Section 3.2) already showed that this
equilibrium is possible in some cases, there is no real existence problem. However we
provide here a general overview of the conditions under which it exists.

Let cH3 be the count of Highs in C3, and cL3 be the count of Lows in C3. Then
c3 = cH3 + cL3 < φ and cH3 6= h, otherwise c̃1 = 0, which contradicts Lemma A.1(a). We
have

c1 = nH − cH3

=

Aφ+ h− cH3 if cH3 < h

(A− 1)φ+ h+
(
φ− cH3

)
if cH3 > h,

(8)

and

c2 = nL − cL3

=

Bφ+ `− cL3 if cL3 ≤ `
(B − 1)φ+ `+

(
n− cL3

)
if cL3 > `.

(9)

It is obviously impossible that cH3 > h and cL3 > ` hold simultaneously since h+ ` = φ.
It also can be seen from (8) and (9) that there are three situations to consider: (1) cH3 < h
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and cL3 ≤ `, (2) cH3 < h and cL3 > `, and (3) cH3 > h and cL3 ≤ `. In this paper we only
analyze the simplest case, in category (1):

cH3 < h, cL3 < `, and cH3 + cL3 < φ.

The other cases can be analyzed in the same manner. We develop our analysis with the
help of Figure 3.4, which illustrates the distribution of players in a NEE.

s1 = H s2 = 1 s3 = 0

c1 = nH − cH3 c2 = nL − cL3 c3

h− cH3 `+ cH3 φ− c3 cH3 cL3

Group (A+ 1)

Figure 3.4: The distribution of players in a NEE

� Incentives to deviate for C3-players in a NEE

Firstly, for player i ∈ C3 ∩NL, her payoff from contributing 0 is

UL
0 (C3) = 1 +m (φ− c3) . (10)

If she contributes 1, then there are c2 + 1 players contributing 1 and player i enters Group
A+ 1, . . . , G with positive probabilities, which are

Pr
(
k | 1

)
=


(
`+ cH3

)
/(c2 + 1), if k = A+ 1

φ/(c2 + 1), if k = A+ 2, . . . , G− 1

(φ− c3 + 1) /(c2 + 1), if k = G.

Let S ≡
(
h− cH3

)
H +

(
`+ cH3

)
. Thus, player i’s expected payoff from contributing 1 is

UL
1 (C3) = m

Pr
(
A+ 1 | 1

)
· S +

 G−1∑
k=A+2

Pr
(
k | 1

) · φ+ Pr
(
G | 1

)
· (φ− c3 + 1)


〈1〉
=

m

c2 + 1

[(
`+ cH3

)
S + (nL − φ− `)φ+ (φ− c3 + 1)2

]
,

(11)

where 〈1〉 holds because

G−1∑
k=A+1

Pr
(
k | 1

)
= 1− `+ cH3

c2 + 1
− φ− c3 + 1

c2 + 1
=

(
c2 + cL3

)
− φ− `

c2 + 1
=
nL − φ− `
c2 + 1

.
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Hence, player i ∈ C3 ∩NL has no incentive to deviate from contributing 0 to contributing
1 if and only if UL

0 (C3) ≥ UL
1 (C3).

Secondly, for i ∈ C3 ∩NH , her payoff from contributing si = H is

UH
0 (C3) = H +m (φ− c3) . (12)

If player i contributes 1 + ε, she enters group (A+ 1) and obtains

lim
ε→0

UH
1+ε (C3) = lim

ε→0

{
(H − 1− ε) +m

[(
h− cH3

)
H +

(
`+ cH3 − 1

)
+ (1 + ε)

]}
= ∆w +mS.

(13)

If player i contributes H, then there are c1 + 1 players contributing H; player i enters
Group 1, . . . , A+ 1 with positive probabilities, which are

Pr
(
k | H

)
=

φ/ (c1 + 1) , if k = 1, . . . , A(
h− cH3 + 1

)
/ (c1 + 1) , if k = A+ 1.

Thus, player i’s expected payoff is

UH
H (C3) = m


A∑

k=1

[
Pr
(
k | H

)
φH
]

+ Pr
(
A+ 1 | H

) [(
h− cH3 + 1

)
H +

(
`+ cH3 − 1

)]
= m

(1− h− cH3 + 1

c1 + 1

)
φH +

h− cH3 + 1

c1 + 1
(S + ∆w)


=

(
m

c1 + 1

)[
(nH − h)φH +

(
h− cH3 + 1

)
(S + ∆w)

]
.

(14)

Hence, player i ∈ C3 has no incentive to deviate if and only if the following conditions
are satisfied:

(10) ≥ (11) : i ∈ C3 ∩NL has no incentive to deviate from 0 to 1

(12) ≥ (13) : i ∈ C3 ∩NH has no incentive to deviate from 0 to 1 + ε

(12) ≥ (14) : i ∈ C3 ∩NH has no incentive to deviate from 0 to H.

(IC3)

� Incentives to deviate for C2-players in a NEE

Recall that C2 consists of Lows. If i ∈ C2 ⊆ NL contributes 1, she gets

UL
1 (C2) =

m

c2

[(
`+ cH3

)
S +

(
c2 − `− cH3 − φ+ c3

)
φ+ (φ− c3)2

]
; (15)
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if she contributes 0, she gets

UL
0 (C2) = 1 +m (φ− c3 − 1) . (16)

Thus, i ∈ C2 ∩NL has no incentive to deviate if and only if

(15) ≥ (16) : i ∈ C2 ⊆ NL has no incentive to deviate from 1 to 0. (IC2)

� Incentives to deviate for C1-players in a NEE

C1 consists of Highs. For i ∈ C1 ⊆ NH , if she contributes H, her expected payoff is

UH
H (C1) = m

(1− h− cH3
c1

)
φH +

h− cH3
c1

S

 . (17)

If she contributes 1 + ε, she obtains

lim
ε→0

UH
1+ε (C1) = lim

ε→0

{
(H − 1− ε) +m

[(
h− cH3 − 1

)
H +

(
`+ cH3

)
+ (1 + ε)

]}
= mS + (1−m) ∆w.

(18)

A similar argument as in Lemma 2 shows that we need not consider whether i ∈ C1∩NH

has any incentive to contribute 1 if she has no incentive to contribute 1+ε. We can therefore
immediately consider the last possible deviation. If player i contributes 0, she obtains

UH
0 (C1) = H +m (φ− c3 − 1) . (19)

Thus, i ∈ C1 ⊆ NH has no incentive to deviate if and only if{
(17) ≥ (18) : i ∈ C1 ⊆ NH has no incentive to deviate from H to 1 + ε

(17) ≥ (19) : i ∈ C1 ⊆ NH has no incentive to deviate from H to 0.
(IC1)

Theorem 3 summarizes this section’s findings:

Theorem 3. The NEE exists if and only if (IC3), (IC2), and (IC1) are all satisfied.

3.5 Coexistence of NEE and FEE?

So far we know that in ths game, an equilibrium with positive contributions is a FEE
or a NEE. Can these two equilibria with positive contributions ever coexist? We will
now show with an example that this is possible. Our analysis focuses on the version of
the 2-Type GBM tested experimentally in this paper. Example 1 demonstrated that this
game has a NEE. Example 5 showed that the game has a FEE if and only if H ≥ 2.5.
We now show that if H = 2.5 there exists, in addition to the FEE, the following NEE:(

〈H,H,H,H〉 , 〈H,H, 1, 1〉 , 〈1, 1, 1, 0〉
)
.
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• For player i ∈ C3 ⊆ NL, her equilibrium payoff is UL
0 (C3) = 1 + 3/2 = 5/2; if she

contributes 1, the expected payoff is UL
1 (C3) = 1

2 ×
(

2
6S + 4

6 × 4
)

= 5
2 = UL

0 (C3).

• For player i ∈ C2 ⊆ NL, her equilibrium payoff is UL
1 (C2) = 1

2 ×
(

2
5 × 7 + 3

5 × 3
)

=

2.3; if she contributes 0, the payoff is UL
0 (C2) = 1 + 1

2 × 2 = 2 < UL
1 (C2).

• Finally, for player i ∈ C1 = NH , she gets UH
H (C1) = 1

2 ×
(

4
6 × 4H + 2

6S
)

= 4.5

in equilibrium; if she contributes 1 + ε, the payoff is limε→0 U
H
1+ε (C1) = S/2 +

(H − 1) /2 = 4.25 < UH
H (C1); if she contributes 0, the payoff is UH

0 (C1) = H+2/2 =
3.5 < UH

H (C1).

Note however that the unique equilibrium with positive contributions is the FEE if
H > 2.5: Since it is required that c1 > 4 and c̃1 > 0 in any equilibrium with positive
contributions, cH3 can only take two possible values: either cH3 = 1 or cH3 = 0. However,
cH3 = 1 is impossible. This is because if a High has no incentives to contribute 0 in the
FEE, she also has no incentive to contribute 0 when there is at least one Low in Group
G contributing 0. Hence, we only need to consider the case of cH3 = 0. By (10),

UL
0 (C3) = 1 +

4− c3

2
=

6− c3

2
. (10′)

By (11),

UL
1 (C3) =

4H + 4 + (5− c3)2

14− 2c3
, (11′)

where c3 = 1, 2, 3. Then

(11′)− (10′) =
3c3 + 4H − 13

14− 2c3

>
3 (c3 − 1)

14− 2c3

> 0,

for any c3 = 1, 2, 3, which means that UL
0 (C3) < UL

1 (C3), that is, any C3-player will
deviate no matter how many players contribute 0 in Group G. We thus proved that no
player will contribute 0 if H > 2.5, in other words, the FEE is the unique equilibrium
with positive contributions if H > 2.5.

4 Method

Experimental game parameters and experimental NEE

The 2-Type GBM was examined under MPCR m = 0.5. The number of participants per
session was twelve, group size was four. Six participants were randomly selected as Lows
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and received L = 80 tokens, the remaining six Highs received H = 120 tokens per round.
Once assigned, a subject’s type did not change over the experiment’s 80 rounds. Most
parameters here are the same as in GVSM including the mean endowment over twelve
subjects. The only difference is that in GVSM’s study endowments are uniform.

Our experimental parameter configuration does not allow a FEE since H is less than
2.5 times L (by Theorem 2; see also Example 5, both in Section 3.3). However, there
exists the following NEE: {120, 120, 120, 120, 120, 120, 80, 80, 80, 80, 0, 0}. This NEE is
calculated in Example 1 (Section 3.2). As usual in a GBM, there also exists a risk-dominant
equilibrium of non-contribution by all (by Lemma 1).

Design and participants

Participants were undergraduates at City University of New York, recruited from the
general student population for a two-hour experiment with payoffs contingent upon the
decisions they and other participants made during the experiment. Subjects were seated in
front of computer terminals separated by blinders. There were four experimental sessions
with twelve participants each, 48 subjects in total. Each session lasted two hours. The
show-up fee was $10. The exchange rate was 700 tokens for a dollar or conversely, 0.143
cents per token. In addition to the show-up fee, mean earnings of Highs were $25; mean
earnings of Lows were $16.

Procedure

Investment decision. At the beginning of each round, each subject received the type-
appropriate amount of integer tokens, to be divided between a public account and a
private account. For every token invested the private account, the account returned one
token to the investor alone. For every token invested in the public account, the return was
0.5 tokens to everyone in the investor’s group including herself. Appendix B contains the
experimental instructions.

Group assignment. In each round, after all subjects had made their investment de-
cisions, they were partitioned in three groups of four. The four highest investors to the
public account were placed into one group, the fifth through the eighth highest investor
into a second group, and the four lowest investors into a third group. Ties were broken at
random. After grouping, subjects’ earnings were calculated based on the group to which
they had been assigned. Note that group assignment depended only on the subjects’ cur-
rent contributions in that round, not on contributions in previous rounds. Subjects were
re-grouped according to these criteria in each decision round (See Appendix B).

End-of-round feedback. After each round, a subject’s computer screen displayed her
private and public investment in that round, the total investment made by the group
she had been assigned to, and her total earnings. The screen also displayed an ordered
series of the current round’s group account contributions by all twelve participants, with
a subject’s own contribution highlighted so that she could see her relative standing. This
ordered series was visually split into three groups of four, which further underscored that
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the participants in the experiment had been grouped according to their contributions and
that ties had been broken at random.

5 Results and discussion

The main purpose of this analysis is to establish whether the 2-Type GBM is an effective
mechanism when abilities to contribute differ, and whether GVSM’s results about the
precise coordination of the payoff dominant equilibrium are robust to such inequality.

Result 1 (Observed mean contributions correspond to the NEE mean con-
tributions). The broken lines in Figure 5.1 represent the NEE mean contributions per
round (86.67 tokens). The solid lines are the observed mean contributions. Mean contri-
butions over all four sessions (solid lines) closely trace their predicted value, and trace it
particularly closely after Round 20. This pattern also emerges in the single sessions shown
in the lower part of Figure 5.1.

Adjustment in initial rounds. There is some adjustment in the initial rounds. In
GVSM’s experiments with homogeneous endowments, subjects coordinated the payoff-
dominant Nash equilibrium as well, but did it more quickly: GVSM’s subjects reached
NEE means by Round 2. Here however, a comparable level of consistent precision is only
achieved after Round 20, even though sporadic mean precision is seen as early as Round 6.
Since GVSM’s experiments and the present experiment were run at different universities,
it is not possible to attribute the slower convergence here to the fact that the NEE of the
2-Type GBM has a more complex structure (three strategies) than the NEE in GVSM’s
homogeneous-endowment game (two strategies).

Result 2 (Strategies that are part of the NEE are predominantly selected,
and selected with precision; there is slightly more precision after about Round
20). The experiment’s NEE consists of the two corner strategies from among a set of
81 choices {0, 1, . . . , 80} for Lows, and only one of 121 available choices {0, 1, . . . , 120}
for Highs. Figure 5.2 shows the strategy space on the horizontal axis and the observed
percentages of choices over four sessions on the vertical axis. Red bars show the NEE
proportions. The top graph shows choice frequencies for Rounds 1-80. The middle graph
shows the same for Rounds 21-80 only, and once again highlights that the equilibrium
strategies are executed with more precision after Round 20. We include a comparable
graph from GVSM as the bottom graph in Figure 5.2. A comparison of the top two
graphs with the bottom graph shows that in both series of experiments the NEE strategy
proportions were coordinated quite precisely.

Coding the data. In Figure 5.2 and in all subsequent analysis, we classify choices ≥ 77
as 80, choices ≥ 117 as 120, and choices ≤ 3 as zero contribution. We recode the raw data
this way since GVSM did the same, so that the two studies can be properly compared.
Note however that GVSM report that this minor recoding, while grounded in behavioral
theory about prominence Selten (1997) and neighboring strategies Erev & Roth (1998),
barely changed their results. The same applies to our data. Table 5.1 displays the raw
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Figure 5.1: Mean contributions per round over four sessions and for each session

29


	w0908forsida.pdf

