INSTITUTE OF ECONOMIC STUDIES
WORKING PAPER SERIES

W06:06 December 2006

A Golden Rule of Depreciation

Thorvaldur Gylfason and Gylfi Zoega

Address: Thorvaldur Gylfason
Department of Economics
University of Iceland
Oddi, at Sturlugata, 101 Reykjavik
Iceland

Email: gylfason@hi.is

Address: Gylfi Zoega
Department of Economics
University of Iceland
Oddi, at Sturlugata, 101 Reykjavik
Iceland

Email: gz@hi.is and gzoega@econ.bbk.ac.uk
A Golden Rule of Depreciation
Thorvaldur Gylfasona and Gylfi Zoegab,c

a Department of Economics, University of Iceland, 101 Reykjavik, Iceland, and CEPR
b Department of Economics, University of Iceland, 101 Reykjavik, Iceland
c Birkbeck College, Malet Street, London WC1E 7HX

ABSTRACT
We derive a Golden Rule for the obsolescence of physical capital. Optimal durability is shown to vary inversely with population growth as well as technological progress. Increased population growth and technological progress accelerate depreciation because providing a rapidly growing and increasingly productive population with high-quality capital is costly in terms of consumption forgone. In the long run, the adverse effect of population growth on the level of output per head is reinforced.

Keywords: Capital, depreciation, economic growth, obsolescence.

JEL Classification: E23.

1. Introduction
This paper makes a simple point. Around the world, differences in the quality of housing, capital and infrastructure are at least as evident as are differences in the quantity of such capital. Comparing the cities of the United States and Mexico, West and East Germany before unification, Austria and Poland, Argentina and Paraguay, Thailand and Laos, and so on, we see vast differences in the quality of housing and other infrastructure. Whether of their own deserts or not, some nations are clearly endowed with physical capital of higher quality than others even if their national income accounts often do not reflect these important differences. How can differences in the quality of capital across countries be explained?

Quality, as we define it, will turn out to be closely related to depreciation – due to economic obsolescence or physical wear and tear. Physical depreciation is a technological phenomenon whereas by economic depreciation we mean obsolescence (see Scott, 1989).1

Producers of capital equipment have considerable leeway in deciding the durability of their

1 We are not the first to propose an economic theory of depreciation. Galbraith (1958) discussed the wastefulness of changing automobile models. Baumol (1971) analyzes depreciation policy in terms of optimal intertemporal resource allocation. Barro (1972) proposed a theory of depreciation based on an assumption of consumers and producers having different discount rates. Bulow (1986) showed how monopolists may desire uneconomically high rates of depreciation for their produce in order to be able to maintain a high price in future periods; for example, textbook authors revise their books aiming to make earlier editions obsolete. Even so, depreciation has not played a big role in the growth literature. For instance, Aghion and Howitt (1998, p. 111) postulate that increased depreciation will have an ambiguous effect on growth because in the short run it reduces the real rate of interest – which tends to increase the incentive to undertake research – while, on the other hand, it directly reduces the rate of change of the per capita capital stock. Thus, capital accumulation slows down while lower interest rates drive innovators to new highs. Another book by Barro and Sala-i-Martin (1995) does not list depreciation in its index.
equipment. Decision-making on the level of planned obsolescence is taught in business schools. We will look at this optimization problem from a macroeconomic standpoint by deriving the optimal level of durability; that is, the one that maximizes consumption in steady state.

2. Durability and Depreciation

When investing, firms decide on the level of costs needed to plan for, organize and ensure the durability of the new capital equipment. By incurring greater costs at the time of investment, they can make the capital last longer. Thus, there arises a trade-off between the costs of investment and future replacement costs.

We measure durability by an index \(d \) between zero and one and proceed to derive the optimal level of durability using the Solow model. The production function in intensive form is

\[
y = f(k) = k^{1-\alpha}
\]

(1)

were output and capital are normalized by the number of efficiency units of labor: \(y = Y/AL \) and \(k = K/AL \), with \(Y \) denoting output, \(L \) labor, \(K \) capital, \(A \) is the level of Harrod-neutral technology, and \(1 - \alpha \) is the elasticity of output with respect to capital.

Physical depreciation \(\delta \) is a decreasing function of the durability \(d \) of the capital stock:

\[
\delta = (1 - d)^\beta
\]

(2)

where \(\beta > 1 \) ensures diminishing returns to durability. When \(d \) rises from zero to one, \(\delta \) falls from one to zero. However, durability comes at a cost. A fraction \(d \) of total investment expenditures is used to ensure the durability of the installed capital equipment; the rest (i.e., the fraction \(1 - d \) of the total) is available for the accumulation of fresh capital.

In the closed economy, saving \((sY)\) is equal to gross investment \((I_g)\) and proportional to output. The dynamics of capital accumulation per capita can now be described as follows:

\[
\dot{k} = i_g (1-d) - [\delta(d) + n + \lambda]k
\]

(3)

Here \(i_g \) denotes gross investment per augmented labor unit, \(n \) is population growth, and \(\lambda \) is the rate of labor-augmenting technological progress. We use \(di_g \) to denote investment necessary to attain a durability level \(d \) for new capital \((1-d)i_g\).

In steady state where \(\dot{k} = 0 \) we have

\[
[f(k) - c](1-d) = [\delta(d) + n + \lambda]k
\]

(4)

Notice that \(c = y - i_g \) is consumption per efficiency unit of labor, or

\[
c = f(k) - \left[\frac{\delta(d) + n + \lambda}{1-d} \right]k
\]

(5)

To find the optimal quantity of capital and its optimal durability we now maximize consumption per unit of augmented labor with respect to \(k \) and \(d \). The optimal capital stock \(k^* \) is the solution to

\[\text{It can be shown that } \beta \geq 2 \text{ is sufficient but not necessary for the second-order condition for a maximum to be satisfied.}\]
\[f_i(k) = \frac{\delta(d) + n + \lambda}{1 - d} \]

The left-hand side of the equation shows the marginal benefit of having one more unit of capital (i.e., the marginal product of capital), while the right-hand side shows the marginal cost of maintaining this extra unit in the face of depreciation, population growth and technological progress. Equation (6) can also be used to derive the optimal saving rate as follows:

\[\frac{f_i k}{y} = \frac{(\delta + n + \lambda) k}{1 - d} y = \frac{i_y}{y} = s \]

or, given equation (1),

\[s = \left(\frac{k}{y} \right) \left[\delta^{-\frac{1}{\beta}} + (n + \lambda) \delta^{-\frac{1}{\beta}} \right] \]

In the long run, the optimal saving rate is simply \(1 - \alpha\), the standard result. Hence, equation (7') tells us that (i) an increase in \(n\) or \(\lambda\) must reduce the capital/output ratio in the long run and (ii) an increase in the depreciation rate \(\delta\) will similarly reduce the capital/output ratio in the long run as long as \(\beta > 1 + (n + \lambda)/\delta\) (more on this condition below). This inverse relationship between the optimal capital/output ratio and depreciation follows from our assumption of diminishing returns to durability.

The golden-rule level of capital \(k^*\) depends on both the productivity and durability of capital. The higher is durability, \(d\), the more expensive, in terms of consumption foregone, is the maintenance of the capital stock for a given rate of depreciation. In other words, the more durability, the greater the sacrifice needed to maintain it for given depreciation. This effect appears in the denominator of the right-hand-side term of equation (6) – the higher \(d\), the larger is the ratio and the lower is the optimal capital stock. However, durability also reduces the depreciation rate and hence also the numerator on the right-hand side of the equation. The net effect of durability on the golden-rule capital stock \(k^*\) is, therefore, ambiguous.

More precisely, we can show by taking the total differential of equation (6) that increased durability will raise the optimal capital stock if the following condition holds:

\[\beta > 1 + \frac{n + \lambda}{\delta} \]

A high value of \(\beta\) means that with a more durable capital stock there is less need for replacement investment, making it less costly to maintain a given stock of capital. This increases the optimal stock of capital. However, increased durability comes at a cost. First, it costs more to replace the units of capital that do depreciate in spite of greater durability and the first term on the right-hand side of inequality (8) captures this. So, in the absence of population growth and technological progress we would need \(\beta > 1\) for more durability to increase the optimal capital stock. With

3 This can be rewritten as

\[\frac{f_i k}{y} = \text{profits} = s \]

which gives the Golden Rule of saving as stated by Phelps: “Save profits and consume wages.”

4 More precisely, our assumption of diminishing returns to durability is a necessary but not sufficient condition for a negative long-run equilibrium relationship between the depreciation rate and the optimal capital-output ratio as shown in equation (7').
population growth and technological progress, however, increased durability makes it more costly to produce capital equipment to satisfy a growing and increasingly productive population, and this is captured by the second term on the right-hand side.

From equations (5) we can similarly derive the first-order condition for optimal durability d^* as:

$$\frac{(1-d)^\beta + n + \lambda}{(1-d)^2} k = \frac{\beta(1-d)^{\beta-1}}{1-d} k$$

(9)

The left-hand side shows the marginal cost of increasing durability d. This is the increase in the cost of replacement investment – units of output used up in building up durability – that is needed every year. The right-hand side represents the marginal benefit from less depreciation in long-run equilibrium. So, with a more durable capital stock, there are fewer units of capital that need to be replaced, but replacing each unit is more costly in terms of consumption forgone.

The marginal benefit in equation (9) depends on the parameter β that shows the effect of durability on the depreciation rate; see equation (2). The greater the effect of investing in durability on depreciation, the higher is the optimal level of such investment. Notice also that the capital stock appears on both sides of equation (9). Therefore, the optimal level of durability does not depend on the capital stock, and is given by

$$d = 1 - \left[\frac{n + \lambda}{\beta - 1}\right]^\frac{1}{\beta}$$

(10)

As long as $\beta > 1$, the optimal level of durability varies inversely with population growth and technological progress. Hence, as $n + \lambda$ rises, the optimal rate of depreciation also rises:

$$\delta = \frac{n + \lambda}{\beta - 1}$$

(11)

Given our assumption that $\beta > 1$, we have here a positive relationship between optimal depreciation and long-run economic growth. When the rate of population growth is high or the rate of technological progress is high, it is costly to maintain a high-quality capital stock as each unit of capital costs more to install. This is also the reason why both rapid population growth and rapid technological progress cause the optimal stock of capital (per unit of augmented labor) to be low. It follows that increased population growth or technological progress causes both the quantity and quality of capital to drop in the long run.5

The total effect of a change in population growth or technological progress on the optimal stock of capital now consists of both the direct effect on the quantity of capital k and the indirect effect

5 We could also let technological progress influence depreciation – or obsolescence – directly by replacing equation (2) by

$$\delta = (1 + \lambda - d)^\beta.$$

Then equation (9) becomes

$$\frac{(1 + \lambda - d)^\beta + n + \lambda}{(1-d)^2} k = \frac{\beta(1 + \lambda - d)^{\beta-1}}{1-d} k.$$

Now a change in λ increases not only the marginal cost of durability on the left-hand side of the new version of equation (9) like before but also the marginal benefit of durability on the right-hand side of the equation. Therefore, the net effect of technological progress on durability and hence also on depreciation is ambiguous in this case.
through durability. By taking the total differential of equation (6) we see that the indirect effect vanishes when \(\beta = 1 + (n + \lambda)/\delta \) (optimal depreciation), reinforces the direct effect when \(\beta > 1 + (n + \lambda)/\delta \) (too much depreciation) and offsets the direct effect when \(\beta < 1 + (n + \lambda)/\delta \) (too little depreciation). Under certain conditions – namely, a high value of \(\beta \) – the total effect of a rise in population growth or technological progress on the level of steady-state capital per person is larger than the direct effect because the indirect effect operating through the depreciation rate reinforces the direct effect.

3. Concluding Remarks

Increased population growth accelerates depreciation given our assumption of diminishing returns to durability because providing a rapidly growing population with high-quality capital is costly in terms of consumption forgone. As a result, economic growth slows down in the medium term more than it would if depreciation were exogenous. In the long run, the adverse effect of population growth on the level of output per head is reinforced.

More rapid technological progress also accelerates depreciation for an analogous reason and thereby stimulates medium-term growth less than it would if depreciation were exogenous. This means that more rapid technological advance increases the level of output per capita less than it would if depreciation were exogenous, even if long-run per capita growth remains unchanged and equal to the rate of technological progress.

References

INSTITUTE OF ECONOMIC STUDIES WORKING PAPERS 1987-2006
Formerly Iceland Economic Papers Series

Editor Sveinn Agnarsson

A complete list of IoES Working Papers and Reprints can be accessed on our World Wide Web site at http://www.ioes.hi.is

W06:06 Thorvaldur Gylfason and Gylfi Zoega: A golden rule of depreciation.
W06:05 Ron Smith and Gylfi Zoega: Global factor, capital adjustment and the natural rate.
W06:04 Thorolfur Matthiasson: To whom should the rent accrue?
W06:03 Tryggvi Thor Herbertsson and Gylfi Zoega: Iceland’s Currency Dilemma.
W06:02 Thorolfur Matthiasson: Possible stakeholder conflicts in quota regulated fisheries, contribution to the political economics of fisheries.
W06:01: Eyjolfur Sigurdsson, Kristin Siggeirsdottir, Halldor Jonsson jr, Vilmundur Gudnason, Thorolfur Matthiasson, Brynjolfur Y Jonsson: Early discharge and home intervention reduces unit costs after total hip replacement: Results of a cost analysis in a randomized study.
W05:14 Gylfi Zoega and J Michael Orszag: Are Risky Workers More Valuable to Firms?
W05:13 Friðrik Már Baldursson: Fairness and pressure group competition.
W05:12 Marias H. Gestsson and Tryggvi Thor Herbertsson: Fiscal Policy as a Stabilizing Tool.
W05:11 Tryggvi Thor Herbertsson and Gylfi Zoega: On the Adverse Effects of Development Aid.
W05:10 Thráinn Eggertsson and Tryggvi Thor Herbertsson: Evolution of Financial Institutions: Iceland’s Path from Repression to Eruption.
W05:08 Ron Smith and Gylfi Zoega: Unemployment, investment and global expected returns: A panel FAVAR approach.
W05:07 Gylfi Zoega and Thórlakur Karlsson: Does Wage Compression Explain Rigid Money Wages?
W05:06 Thorvaldur Gylfason: India and China
W05:05 Edmund S. Phelps: Can Capitalism Survive?
W05:04 Thorvaldur Gylfason: Institutions, Human Capital, and Diversification of Rentier Economies
W05:03 Jón Danielsson and Ásgeir Jónsson: Countercyclical Capital and Currency Dependence
W05:02 Alison L. Booth and Gylfi Zoega: Worker Heterogeneity, Intra-firm Externalities and Wage Compression
W05:01 Tryggvi Thor Herbertsson and Martin Paldam: Does development aid help poor countries catch up?
W04:12 Tryggvi Thor Herbertsson: Personal Pensions and Markets
W04:11 Fridrik M. Baldursson and Sigurdur Johannesson: Countervailing Power in the Icelandic Cement Industry

W04:10 Fridrik M. Baldursson: Property by ultimatum: The case of the Reykjavik Savings Bank

W04:09 Ingólfur Arnarson: Analyzing Behavior of Agents of Economic Processes in Time

W04:08 Otto Biering Ottosson and Thorolfur Matthiasson: Subsidizing the Icelandic Fisheries

W04:06 Ingolfur Arnarson: Modelling Fishery Management Schemes with an Olympic System Application

W04:05 Ingolfur Arnarson and Pall Jensson: Adding the Sales Markets Dimension to Bio-Economic Models. The Case of Fishery Management

W04:04 Edmund S. Phelps: Changing Prospects, Speculative Swings: Structuralist Links through Real Asset Prices and Exchange Rates

W04:03 Ingolfur Arnarson: Analysing Behavior of Agents of Economic Processes in Time

W04:02 Ron Smith and Gylfi Zoega: Global Shocks and Unemployment Adjustment

W04:01 Fridrik M. Baldursson and Nils-Henrik M von der Fehr: Prices vs. quantities: public finance and the choice of regulatory instruments

W03:07 Sveinn Agnarsson and Ragnar Arnason: The Role of the Fishing Industry in the Icelandic Economy. A historical Examination

W03:06 Thorolfur Matthiasson: Paying paper by paper, the wage system of Icelandic University teachers explained

W03:05 Gur Ofur and Ilana Grau: Bringing the Government hospitals into line: The next step of reform in the healthcare sector

W03:04 Ingolfur Arnarson and Pall Jensson: The Impact of the Cost of the Time Resource on the Efficiency of Economic Processes

W03:03 Torben M. Andersen and Tryggvi Thor Herbertsson: Measuring Globalization

W03:02 Tryggvi Thor Herbertsson and J. Michael Orszag: The Early Retirement Burden: Assessing the Costs of the Continued Prevalence of Early Retirement in OECD Countries

W03:01 Eirik S. Amundsen, Fridrik M. Baldursson and Jørgen Birk Mortensen: Price Volatility and Banking in Green Certificate Markets

W02:10 Tryggvi Thor Herbertsson and Gylfi Zoega: A Microstate with Scale Economies: The Case of Iceland

W02:09 Alison, L. Booth and Gylfi Zoega: Is Wage Compression a Necessary Condition for Firm-Financed General Training

W02:08 Asgeir Jonsson: Exchange rate interventions in centralized labor markets

W02:07 Alison, L. Booth, Marco Francesconi and Gylfi Zoega: Oligopsony, Institutions and the Efficiency of General Training
W02:06 Alison L. Booth and Gylfi Zoega: If you’re so smart, why aren’t you rich? Wage inequality with heterogeneous workers